Morphisms between Spaces of Leaves Viewed as Fractions

نویسنده

  • JEAN PRADINES
چکیده

Après avoir transféré au cadre différentiable la notion algébrique d’équivalence de groupöıdes, nous montrons que les morphismes de la catégorie de fractions correspondante sont représentés par une unique fraction irréductible (calcul de fractions simplifié) que nous identifions aux morphismes de Connes–Skandalis–Haefliger entre espace de feuilles. Dans cette catégorie de fractions, le groupe fondamental de l’espace d’orbites au sens de Haefliger– van Est s’interprète comme réflecteur sur la sous-catégorie pleine des groupes discrets. The algebraic notion of equivalence between two groupoids is translated in the differentiable framework. Then we show that a morphism of the category of fractions in which these smooth equivalences are formally inverted may be represented by a unique irreducible fraction (simplified calculus of fractions, as in the elementary case of integers) which moreover may be identified with a generalized morphism in the sense of Connes–Skandalis–Haefliger between spaces of leaves. In this category of fractions, the fundamental group of the space of orbits in the sense of Haefliger–van Est is interpreted as a reflector onto the full sub-category of discrete groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From torsion theories to closure operators and factorization systems

Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].

متن کامل

Homotopy approximation of modules

Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.

متن کامل

Tropical Fans and the Moduli Spaces of Tropical Curves

We give a rigorous definition of tropical fans (the “local building blocks for tropical varieties”) and their morphisms. For a morphism of tropical fans of the same dimension we show that the number of inverse images (counted with suitable tropical multiplicities) of a point in the target does not depend on the chosen point — a statement that can be viewed as one of the important first steps of...

متن کامل

On a Conjecture of Rapoport and Zink

In their book Rapoport and Zink constructed rigid analytic period spaces F for Fontaine’s filtered isocrystals and period morphisms from moduli spaces of p-divisible groups to some of these period spaces. They conjectured the existence of an étale bijective morphism F → F of rigid analytic spaces and of interesting local systems of Qp-vector spaces on F. For those period spaces possessing perio...

متن کامل

On the Classification of Quadratic Harmonic Morphisms between Euclidean Spaces

We give a classification of quadratic harmonic morphisms between Euclidean spaces (Theorem 2.4) after proving a Rank Lemma. We also find a correspondence between umbilical (Definition 2.7) quadratic harmonic morphisms and Clifford systems. In the case R −→ R, we determine all quadratic harmonic morphisms and show that, up to a constant factor, they are all bi-equivalent (Definition 3.2) to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989